gnu: Add python-spacy.
* gnu/packages/machine-learning.scm (python-spacy): New variable.master
parent
d3934c7cc2
commit
266e54d7cb
|
@ -768,6 +768,71 @@ compatibility.")
|
|||
natural language processing framework.")
|
||||
(license license:expat)))
|
||||
|
||||
(define-public python-spacy
|
||||
(package
|
||||
(name "python-spacy")
|
||||
(version "3.5.3")
|
||||
(source (origin
|
||||
(method url-fetch)
|
||||
(uri (pypi-uri "spacy" version))
|
||||
(sha256
|
||||
(base32
|
||||
"13141hc966d8nxbnlwj01vhndgq0rq4nmii3qkb3hrap45kiv5rm"))))
|
||||
(build-system pyproject-build-system)
|
||||
(arguments
|
||||
(list
|
||||
#:test-flags
|
||||
'(list "-k"
|
||||
(string-append
|
||||
;; We don't do that around here.
|
||||
"not test_download_compatibility"
|
||||
;; This needs to download a model.
|
||||
" and not test_validate_compatibility_table"
|
||||
;; This tries to run the application with typer, which fails
|
||||
;; with an unspecified error, possibly because the build
|
||||
;; container doesn't have /bin/sh.
|
||||
" and not test_project_assets"))
|
||||
#:phases
|
||||
'(modify-phases %standard-phases
|
||||
(add-after 'build 'build-ext
|
||||
(lambda _
|
||||
(invoke "python" "setup.py" "build_ext" "--inplace"
|
||||
"-j" (number->string (parallel-job-count))))))))
|
||||
(propagated-inputs (list python-catalogue
|
||||
python-cymem
|
||||
python-jinja2
|
||||
python-langcodes
|
||||
python-murmurhash
|
||||
python-numpy
|
||||
python-packaging
|
||||
python-pathy
|
||||
python-preshed
|
||||
python-pydantic
|
||||
python-requests
|
||||
python-setuptools
|
||||
python-smart-open
|
||||
python-spacy-legacy
|
||||
python-spacy-loggers
|
||||
python-srsly
|
||||
python-thinc
|
||||
python-tqdm
|
||||
python-typer
|
||||
python-typing-extensions
|
||||
python-wasabi))
|
||||
(native-inputs
|
||||
(list python-cython python-pytest python-mock))
|
||||
(home-page "https://spacy.io")
|
||||
(synopsis "Natural Language Processing (NLP) in Python")
|
||||
(description
|
||||
"SpaCy is a library for advanced Natural Language Processing in Python
|
||||
and Cython. It comes with pretrained pipelines and currently supports
|
||||
tokenization and training for 70+ languages. It features state-of-the-art
|
||||
speed and neural network models for tagging, parsing, named entity
|
||||
recognition, text classification and more, multi-task learning with pretrained
|
||||
transformers like BERT, as well as a production-ready training system and easy
|
||||
model packaging, deployment and workflow management.")
|
||||
(license license:expat)))
|
||||
|
||||
(define-public shogun
|
||||
(package
|
||||
(name "shogun")
|
||||
|
|
Reference in New Issue