Archived
1
0
Fork 0

gnu: Add r-mlecens.

* gnu/packages/cran.scm (r-mlecens): New variable.

Signed-off-by: Ricardo Wurmus <rekado@elephly.net>
This commit is contained in:
Peter Lo 2020-06-29 16:03:37 +08:00 committed by Ricardo Wurmus
parent 488001eb3f
commit 4a13770003
No known key found for this signature in database
GPG key ID: 197A5888235FACAC

View file

@ -24186,3 +24186,30 @@ model-related packages.")
statistical analysis that share the underlying design philosophy, grammar, and statistical analysis that share the underlying design philosophy, grammar, and
data structures of the tidyverse.") data structures of the tidyverse.")
(license license:gpl3))) (license license:gpl3)))
(define-public r-mlecens
(package
(name "r-mlecens")
(version "0.1-4")
(source
(origin
(method url-fetch)
(uri (cran-uri "MLEcens" version))
(sha256
(base32
"0zlmrcjraypscgs2v0w4s4hm7qccsmaz4hjsgqpn0058vx622945"))))
(properties `((upstream-name . "MLEcens")))
(build-system r-build-system)
(home-page "http://stat.ethz.ch/~maathuis/")
(synopsis "Computation of the MLE for bivariate (interval) censored data")
(description
"This package contains functions to compute the nonparametric
@dfn{maximum likelihood estimator} (MLE) for the bivariate distribution of
@code{(X,Y)}, when realizations of @code{(X,Y)} cannot be observed directly.
To be more precise, we consider the situation where we observe a set of
rectangles that are known to contain the unobservable realizations of (X,Y).
We compute the MLE based on such a set of rectangles. The methods can also be
used for univariate censored data (see data set @code{cosmesis}), and for
censored data with competing risks (see data set @code{menopause}). The
package also provides functions to visualize the observed data and the MLE.")
(license license:gpl2+)))