parent
2794024dc2
commit
4f6b3821eb
|
@ -14277,6 +14277,62 @@ throughput technology like RNA-seq or tiling array, and copy number analysis
|
|||
using aCGH or sequencing.")
|
||||
(license license:gpl2+)))
|
||||
|
||||
(define-public r-bionero
|
||||
(package
|
||||
(name "r-bionero")
|
||||
(version "1.0.4")
|
||||
(source
|
||||
(origin
|
||||
(method url-fetch)
|
||||
(uri (bioconductor-uri "BioNERO" version))
|
||||
(sha256
|
||||
(base32
|
||||
"1yj0pavyfrj2gsvaj1dkgmznibm2appxjx9rk5qjslhslmm5b05b"))))
|
||||
(properties `((upstream-name . "BioNERO")))
|
||||
(build-system r-build-system)
|
||||
(propagated-inputs
|
||||
`(("r-biocparallel" ,r-biocparallel)
|
||||
("r-complexheatmap" ,r-complexheatmap)
|
||||
("r-deseq2" ,r-deseq2)
|
||||
("r-dynamictreecut" ,r-dynamictreecut)
|
||||
("r-genie3" ,r-genie3)
|
||||
("r-ggnetwork" ,r-ggnetwork)
|
||||
("r-ggnewscale" ,r-ggnewscale)
|
||||
("r-ggplot2" ,r-ggplot2)
|
||||
("r-ggpubr" ,r-ggpubr)
|
||||
("r-igraph" ,r-igraph)
|
||||
("r-intergraph" ,r-intergraph)
|
||||
("r-matrixstats" ,r-matrixstats)
|
||||
("r-minet" ,r-minet)
|
||||
("r-netrep" ,r-netrep)
|
||||
("r-networkd3" ,r-networkd3)
|
||||
("r-rcolorbrewer" ,r-rcolorbrewer)
|
||||
("r-reshape2" ,r-reshape2)
|
||||
("r-summarizedexperiment" ,r-summarizedexperiment)
|
||||
("r-sva" ,r-sva)
|
||||
("r-wgcna" ,r-wgcna)))
|
||||
(native-inputs
|
||||
`(("r-knitr" ,r-knitr)))
|
||||
(home-page "https://github.com/almeidasilvaf/BioNERO")
|
||||
(synopsis "Biological network reconstruction omnibus")
|
||||
(description
|
||||
"BioNERO aims to integrate all aspects of biological network inference in
|
||||
a single package, including data preprocessing, exploratory analyses, network
|
||||
inference, and analyses for biological interpretations. BioNERO can be used
|
||||
to infer gene coexpression networks (GCNs) and gene regulatory networks (GRNs)
|
||||
from gene expression data. Additionally, it can be used to explore
|
||||
topological properties of protein-protein interaction (PPI) networks. GCN
|
||||
inference relies on the popular WGCNA algorithm. GRN inference is based on
|
||||
the \"wisdom of the crowds\" principle, which consists in inferring GRNs with
|
||||
multiple algorithms (here, CLR, GENIE3 and ARACNE) and calculating the average
|
||||
rank for each interaction pair. As all steps of network analyses are included
|
||||
in this package, BioNERO makes users avoid having to learn the syntaxes of
|
||||
several packages and how to communicate between them. Finally, users can also
|
||||
identify consensus modules across independent expression sets and calculate
|
||||
intra and interspecies module preservation statistics between different
|
||||
networks.")
|
||||
(license license:gpl3)))
|
||||
|
||||
(define-public r-tximeta
|
||||
(package
|
||||
(name "r-tximeta")
|
||||
|
|
Reference in New Issue