gnu: Add python-mofapy2.
* gnu/packages/bioinformatics.scm (python-mofapy2): New variable. Change-Id: Ide92878258511b3daf4e56d5faa94d190fdee62f Signed-off-by: Ricardo Wurmus <rekado@elephly.net>
This commit is contained in:
parent
b77491909b
commit
58ead4baf9
1 changed files with 44 additions and 0 deletions
|
@ -4491,6 +4491,50 @@ It is designed to provide functionality to load, process, and store multimodal
|
||||||
omics data.")
|
omics data.")
|
||||||
(license license:bsd-3)))
|
(license license:bsd-3)))
|
||||||
|
|
||||||
|
(define-public python-mofapy2
|
||||||
|
(package
|
||||||
|
(name "python-mofapy2")
|
||||||
|
(version "0.7.1")
|
||||||
|
(source
|
||||||
|
(origin
|
||||||
|
;; The tarball from PyPi doesn't include tests.
|
||||||
|
(method git-fetch)
|
||||||
|
(uri (git-reference
|
||||||
|
(url "https://github.com/bioFAM/mofapy2")
|
||||||
|
(commit (string-append "v" version))))
|
||||||
|
(file-name (git-file-name name version))
|
||||||
|
(sha256
|
||||||
|
(base32
|
||||||
|
"0ahhnqk6gjrhyq286mrd5n7mxcv8l6040ffsawbjx9maqx8wbam0"))))
|
||||||
|
(build-system pyproject-build-system)
|
||||||
|
(arguments
|
||||||
|
(list
|
||||||
|
#:test-flags
|
||||||
|
;; cupy is an optional dependency, which
|
||||||
|
;; itself has nonfree dependencies (CUDA)
|
||||||
|
'(list "--ignore=mofapy2/notebooks/test_cupy.py")))
|
||||||
|
(propagated-inputs (list python-anndata
|
||||||
|
python-h5py
|
||||||
|
python-numpy
|
||||||
|
python-pandas
|
||||||
|
python-scikit-learn
|
||||||
|
python-scipy))
|
||||||
|
(native-inputs (list python-poetry-core
|
||||||
|
python-pytest))
|
||||||
|
(home-page "https://biofam.github.io/MOFA2/")
|
||||||
|
(synopsis "Multi-omics factor analysis")
|
||||||
|
(description "MOFA is a factor analysis model that provides a general
|
||||||
|
framework for the integration of multi-omic data sets in an unsupervised
|
||||||
|
fashion. Intuitively, MOFA can be viewed as a versatile and statistically
|
||||||
|
rigorous generalization of principal component analysis to multi-omics data.
|
||||||
|
Given several data matrices with measurements of multiple -omics data types on
|
||||||
|
the same or on overlapping sets of samples, MOFA infers an interpretable
|
||||||
|
low-dimensional representation in terms of a few latent factors. These learnt
|
||||||
|
factors represent the driving sources of variation across data modalities,
|
||||||
|
thus facilitating the identification of cellular states or disease
|
||||||
|
subgroups.")
|
||||||
|
(license license:lgpl3)))
|
||||||
|
|
||||||
(define-public python-pyega3
|
(define-public python-pyega3
|
||||||
(deprecated-package "python-pyega3" python-ega-download-client))
|
(deprecated-package "python-pyega3" python-ega-download-client))
|
||||||
|
|
||||||
|
|
Reference in a new issue