parent
1901a53241
commit
8cd3f49d46
|
@ -10941,3 +10941,38 @@ several common set, element and attribute related tasks.")
|
|||
"This package provides a collection of some tests commonly used for
|
||||
identifying outliers.")
|
||||
(license license:gpl2+)))
|
||||
|
||||
(define-public r-bayesm
|
||||
(package
|
||||
(name "r-bayesm")
|
||||
(version "3.1-1")
|
||||
(source
|
||||
(origin
|
||||
(method url-fetch)
|
||||
(uri (cran-uri "bayesm" version))
|
||||
(sha256
|
||||
(base32
|
||||
"0y30cza92s6kgvmxjpr6f5g0qbcck7hslqp89ncprarhxiym2m28"))))
|
||||
(build-system r-build-system)
|
||||
(propagated-inputs
|
||||
`(("r-rcpp" ,r-rcpp)
|
||||
("r-rcpparmadillo" ,r-rcpparmadillo)))
|
||||
(home-page "http://www.perossi.org/home/bsm-1")
|
||||
(synopsis "Bayesian inference for marketing/micro-econometrics")
|
||||
(description
|
||||
"This package covers many important models used in marketing and
|
||||
micro-econometrics applications, including Bayes Regression (univariate or
|
||||
multivariate dep var), Bayes Seemingly Unrelated Regression (SUR), Binary and
|
||||
Ordinal Probit, Multinomial Logit (MNL) and Multinomial Probit (MNP),
|
||||
Multivariate Probit, Negative Binomial (Poisson) Regression, Multivariate
|
||||
Mixtures of Normals (including clustering), Dirichlet Process Prior Density
|
||||
Estimation with normal base, Hierarchical Linear Models with normal prior and
|
||||
covariates, Hierarchical Linear Models with a mixture of normals prior and
|
||||
covariates, Hierarchical Multinomial Logits with a mixture of normals prior
|
||||
and covariates, Hierarchical Multinomial Logits with a Dirichlet Process prior
|
||||
and covariates, Hierarchical Negative Binomial Regression Models, Bayesian
|
||||
analysis of choice-based conjoint data, Bayesian treatment of linear
|
||||
instrumental variables models, Analysis of Multivariate Ordinal survey data
|
||||
with scale usage heterogeneity, and Bayesian Analysis of Aggregate Random
|
||||
Coefficient Logit Models.")
|
||||
(license license:gpl2+)))
|
||||
|
|
Reference in New Issue