gnu: Add r-depecher.
* gnu/packages/bioconductor.scm (r-depecher): New variable. Co-authored-by: Ricardo Wurmus <rekado@elephly.net> Signed-off-by: Ricardo Wurmus <rekado@elephly.net>master
parent
1adb9cbc5e
commit
a0efa069a1
|
@ -4974,3 +4974,53 @@ also beyond the realm of omics (e.g. spectral imaging). The methods
|
|||
implemented in mixOmics can also handle missing values without having to
|
||||
delete entire rows with missing data.")
|
||||
(license license:gpl2+)))
|
||||
|
||||
(define-public r-depecher
|
||||
(package
|
||||
(name "r-depecher")
|
||||
(version "1.0.3")
|
||||
(source
|
||||
(origin
|
||||
(method url-fetch)
|
||||
(uri (bioconductor-uri "DepecheR" version))
|
||||
(sha256
|
||||
(base32
|
||||
"0qj2h2a50fncppvi2phh0mbivxkn1mv702mqpi9mvvkf3bzq8m0h"))))
|
||||
(properties `((upstream-name . "DepecheR")))
|
||||
(build-system r-build-system)
|
||||
(arguments
|
||||
`(#:phases
|
||||
(modify-phases %standard-phases
|
||||
(add-after 'unpack 'fix-syntax-error
|
||||
(lambda _
|
||||
(substitute* "src/Makevars"
|
||||
((" & ") " && "))
|
||||
#t)))))
|
||||
(propagated-inputs
|
||||
`(("r-beanplot" ,r-beanplot)
|
||||
("r-biocparallel" ,r-biocparallel)
|
||||
("r-dosnow" ,r-dosnow)
|
||||
("r-dplyr" ,r-dplyr)
|
||||
("r-foreach" ,r-foreach)
|
||||
("r-ggplot2" ,r-ggplot2)
|
||||
("r-gplots" ,r-gplots)
|
||||
("r-mass" ,r-mass)
|
||||
("r-matrixstats" ,r-matrixstats)
|
||||
("r-mixomics" ,r-mixomics)
|
||||
("r-moments" ,r-moments)
|
||||
("r-rcpp" ,r-rcpp)
|
||||
("r-rcppeigen" ,r-rcppeigen)
|
||||
("r-reshape2" ,r-reshape2)
|
||||
("r-viridis" ,r-viridis)))
|
||||
(home-page "https://bioconductor.org/packages/DepecheR/")
|
||||
(synopsis "Identify traits of clusters in high-dimensional entities")
|
||||
(description
|
||||
"The purpose of this package is to identify traits in a dataset that can
|
||||
separate groups. This is done on two levels. First, clustering is performed,
|
||||
using an implementation of sparse K-means. Secondly, the generated clusters
|
||||
are used to predict outcomes of groups of individuals based on their
|
||||
distribution of observations in the different clusters. As certain clusters
|
||||
with separating information will be identified, and these clusters are defined
|
||||
by a sparse number of variables, this method can reduce the complexity of
|
||||
data, to only emphasize the data that actually matters.")
|
||||
(license license:expat)))
|
||||
|
|
Reference in New Issue