gnu: r-abn: Update to 2.5-0.
* gnu/packages/cran.scm (r-abn): Move from here... * gnu/packages/bioconductor.scm (r-abn): ...to here; update to 2.5-0. [propagated-inputs]: Add r-rgraphviz.
This commit is contained in:
		
							parent
							
								
									b9fb13b284
								
							
						
					
					
						commit
						aa9a94bba9
					
				
					 2 changed files with 38 additions and 35 deletions
				
			
		|  | @ -10996,6 +10996,44 @@ optionally include the physical locations or genetic map distances of each SNP | |||
| on the plot.") | ||||
|     (license license:gpl3))) | ||||
| 
 | ||||
| ;; This is a CRAN package, but it depends on r-rgraphviz, which is a | ||||
| ;; Bioconductor package. | ||||
| (define-public r-abn | ||||
|   (package | ||||
|     (name "r-abn") | ||||
|     (version "2.5-0") | ||||
|     (source | ||||
|      (origin | ||||
|        (method url-fetch) | ||||
|        (uri (cran-uri "abn" version)) | ||||
|        (sha256 | ||||
|         (base32 | ||||
|          "1fqmhw0mhdl6az1gpg0byvx5snhz1pl3fqikhyfjcjrc9xbsq8yw")))) | ||||
|     (build-system r-build-system) | ||||
|     (inputs | ||||
|      `(("gsl" ,gsl))) | ||||
|     (propagated-inputs | ||||
|      `(("r-lme4" ,r-lme4) | ||||
|        ("r-nnet" ,r-nnet) | ||||
|        ("r-rcpp" ,r-rcpp) | ||||
|        ("r-rcpparmadillo" ,r-rcpparmadillo) | ||||
|        ("r-rgraphviz" ,r-rgraphviz) | ||||
|        ("r-rjags" ,r-rjags))) | ||||
|     (home-page "https://r-bayesian-networks.org/") | ||||
|     (synopsis "Modelling multivariate data with additive bayesian networks") | ||||
|     (description | ||||
|      "Bayesian network analysis is a form of probabilistic graphical models | ||||
| which derives from empirical data a directed acyclic graph, DAG, describing | ||||
| the dependency structure between random variables.  An additive Bayesian | ||||
| network model consists of a form of a DAG where each node comprises a | ||||
| @dfn{generalized linear model} (GLM).  Additive Bayesian network models are | ||||
| equivalent to Bayesian multivariate regression using graphical modelling, they | ||||
| generalises the usual multivariable regression, GLM, to multiple dependent | ||||
| variables.  This package provides routines to help determine optimal Bayesian | ||||
| network models for a given data set, where these models are used to identify | ||||
| statistical dependencies in messy, complex data.") | ||||
|     (license license:gpl2+))) | ||||
| 
 | ||||
| (define-public r-pathview | ||||
|   (package | ||||
|     (name "r-pathview") | ||||
|  |  | |||
|  | @ -8037,41 +8037,6 @@ mutual information, and chi-squared statistic of independence.  In addition | |||
| there are functions for discretizing continuous random variables.") | ||||
|     (license license:gpl3+))) | ||||
| 
 | ||||
| (define-public r-abn | ||||
|   (package | ||||
|     (name "r-abn") | ||||
|     (version "2.3-0") | ||||
|     (source | ||||
|      (origin | ||||
|        (method url-fetch) | ||||
|        (uri (cran-uri "abn" version)) | ||||
|        (sha256 | ||||
|         (base32 | ||||
|          "17vdrqm6qp5aijg00ah2imj3pqr6cl5r43hgg8dijbrbhznarci6")))) | ||||
|     (build-system r-build-system) | ||||
|     (inputs | ||||
|      `(("gsl" ,gsl))) | ||||
|     (propagated-inputs | ||||
|      `(("r-lme4" ,r-lme4) | ||||
|        ("r-nnet" ,r-nnet) | ||||
|        ("r-rcpp" ,r-rcpp) | ||||
|        ("r-rcpparmadillo" ,r-rcpparmadillo) | ||||
|        ("r-rjags" ,r-rjags))) | ||||
|     (home-page "https://r-bayesian-networks.org/") | ||||
|     (synopsis "Modelling multivariate data with additive bayesian networks") | ||||
|     (description | ||||
|      "Bayesian network analysis is a form of probabilistic graphical models | ||||
| which derives from empirical data a directed acyclic graph, DAG, describing | ||||
| the dependency structure between random variables.  An additive Bayesian | ||||
| network model consists of a form of a DAG where each node comprises a | ||||
| @dfn{generalized linear model} (GLM).  Additive Bayesian network models are | ||||
| equivalent to Bayesian multivariate regression using graphical modelling, they | ||||
| generalises the usual multivariable regression, GLM, to multiple dependent | ||||
| variables.  This package provides routines to help determine optimal Bayesian | ||||
| network models for a given data set, where these models are used to identify | ||||
| statistical dependencies in messy, complex data.") | ||||
|     (license license:gpl2+))) | ||||
| 
 | ||||
| (define-public r-acd | ||||
|   (package | ||||
|     (name "r-acd") | ||||
|  |  | |||
		Reference in a new issue