|
|
|
@ -1,275 +0,0 @@
|
|
|
|
|
From cd74e00d0e4f435d548444e1a5edc20155e371d7 Mon Sep 17 00:00:00 2001
|
|
|
|
|
From: =?UTF-8?q?Jonas=20T=C3=B8rnes?= <jonas.tornes@gmail.com>
|
|
|
|
|
Date: Wed, 15 Feb 2023 18:47:52 +0100
|
|
|
|
|
Subject: [PATCH 1/5] Update RandomForesetRegressor criterion to be inline with
|
|
|
|
|
scikit-learn change from mse to squared error this has the same funcitonality
|
|
|
|
|
|
|
|
|
|
---
|
|
|
|
|
requirements.txt | 6 +++---
|
|
|
|
|
setup.py | 6 +++---
|
|
|
|
|
skopt/learning/forest.py | 30 +++++++++++++++---------------
|
|
|
|
|
3 files changed, 21 insertions(+), 21 deletions(-)
|
|
|
|
|
|
|
|
|
|
diff --git a/requirements.txt b/requirements.txt
|
|
|
|
|
index 1eaa3083a..23ab3d856 100644
|
|
|
|
|
--- a/requirements.txt
|
|
|
|
|
+++ b/requirements.txt
|
|
|
|
|
@@ -1,6 +1,6 @@
|
|
|
|
|
-numpy>=1.13.3
|
|
|
|
|
-scipy>=0.19.1
|
|
|
|
|
-scikit-learn>=0.20
|
|
|
|
|
+numpy>=1.23.2
|
|
|
|
|
+scipy>=1.10.0
|
|
|
|
|
+scikit-learn>=1.2.1
|
|
|
|
|
matplotlib>=2.0.0
|
|
|
|
|
pytest
|
|
|
|
|
pyaml>=16.9
|
|
|
|
|
diff --git a/setup.py b/setup.py
|
|
|
|
|
index 8879da880..e7f921765 100644
|
|
|
|
|
--- a/setup.py
|
|
|
|
|
+++ b/setup.py
|
|
|
|
|
@@ -42,9 +42,9 @@
|
|
|
|
|
classifiers=CLASSIFIERS,
|
|
|
|
|
packages=['skopt', 'skopt.learning', 'skopt.optimizer', 'skopt.space',
|
|
|
|
|
'skopt.learning.gaussian_process', 'skopt.sampler'],
|
|
|
|
|
- install_requires=['joblib>=0.11', 'pyaml>=16.9', 'numpy>=1.13.3',
|
|
|
|
|
- 'scipy>=0.19.1',
|
|
|
|
|
- 'scikit-learn>=0.20.0'],
|
|
|
|
|
+ install_requires=['joblib>=0.11', 'pyaml>=16.9', 'numpy>=1.23.2',
|
|
|
|
|
+ 'scipy>=1.10.0',
|
|
|
|
|
+ 'scikit-learn>=1.2.1'],
|
|
|
|
|
extras_require={
|
|
|
|
|
'plots': ["matplotlib>=2.0.0"]
|
|
|
|
|
}
|
|
|
|
|
diff --git a/skopt/learning/forest.py b/skopt/learning/forest.py
|
|
|
|
|
index 096770c1d..ebde568f5 100644
|
|
|
|
|
--- a/skopt/learning/forest.py
|
|
|
|
|
+++ b/skopt/learning/forest.py
|
|
|
|
|
@@ -27,7 +27,7 @@ def _return_std(X, trees, predictions, min_variance):
|
|
|
|
|
-------
|
|
|
|
|
std : array-like, shape=(n_samples,)
|
|
|
|
|
Standard deviation of `y` at `X`. If criterion
|
|
|
|
|
- is set to "mse", then `std[i] ~= std(y | X[i])`.
|
|
|
|
|
+ is set to "squared_error", then `std[i] ~= std(y | X[i])`.
|
|
|
|
|
|
|
|
|
|
"""
|
|
|
|
|
# This derives std(y | x) as described in 4.3.2 of arXiv:1211.0906
|
|
|
|
|
@@ -61,9 +61,9 @@ class RandomForestRegressor(_sk_RandomForestRegressor):
|
|
|
|
|
n_estimators : integer, optional (default=10)
|
|
|
|
|
The number of trees in the forest.
|
|
|
|
|
|
|
|
|
|
- criterion : string, optional (default="mse")
|
|
|
|
|
+ criterion : string, optional (default="squared_error")
|
|
|
|
|
The function to measure the quality of a split. Supported criteria
|
|
|
|
|
- are "mse" for the mean squared error, which is equal to variance
|
|
|
|
|
+ are "squared_error" for the mean squared error, which is equal to variance
|
|
|
|
|
reduction as feature selection criterion, and "mae" for the mean
|
|
|
|
|
absolute error.
|
|
|
|
|
|
|
|
|
|
@@ -194,7 +194,7 @@ class RandomForestRegressor(_sk_RandomForestRegressor):
|
|
|
|
|
.. [1] L. Breiman, "Random Forests", Machine Learning, 45(1), 5-32, 2001.
|
|
|
|
|
|
|
|
|
|
"""
|
|
|
|
|
- def __init__(self, n_estimators=10, criterion='mse', max_depth=None,
|
|
|
|
|
+ def __init__(self, n_estimators=10, criterion='squared_error', max_depth=None,
|
|
|
|
|
min_samples_split=2, min_samples_leaf=1,
|
|
|
|
|
min_weight_fraction_leaf=0.0, max_features='auto',
|
|
|
|
|
max_leaf_nodes=None, min_impurity_decrease=0.,
|
|
|
|
|
@@ -228,20 +228,20 @@ def predict(self, X, return_std=False):
|
|
|
|
|
Returns
|
|
|
|
|
-------
|
|
|
|
|
predictions : array-like of shape = (n_samples,)
|
|
|
|
|
- Predicted values for X. If criterion is set to "mse",
|
|
|
|
|
+ Predicted values for X. If criterion is set to "squared_error",
|
|
|
|
|
then `predictions[i] ~= mean(y | X[i])`.
|
|
|
|
|
|
|
|
|
|
std : array-like of shape=(n_samples,)
|
|
|
|
|
Standard deviation of `y` at `X`. If criterion
|
|
|
|
|
- is set to "mse", then `std[i] ~= std(y | X[i])`.
|
|
|
|
|
+ is set to "squared_error", then `std[i] ~= std(y | X[i])`.
|
|
|
|
|
|
|
|
|
|
"""
|
|
|
|
|
mean = super(RandomForestRegressor, self).predict(X)
|
|
|
|
|
|
|
|
|
|
if return_std:
|
|
|
|
|
- if self.criterion != "mse":
|
|
|
|
|
+ if self.criterion != "squared_error":
|
|
|
|
|
raise ValueError(
|
|
|
|
|
- "Expected impurity to be 'mse', got %s instead"
|
|
|
|
|
+ "Expected impurity to be 'squared_error', got %s instead"
|
|
|
|
|
% self.criterion)
|
|
|
|
|
std = _return_std(X, self.estimators_, mean, self.min_variance)
|
|
|
|
|
return mean, std
|
|
|
|
|
@@ -257,9 +257,9 @@ class ExtraTreesRegressor(_sk_ExtraTreesRegressor):
|
|
|
|
|
n_estimators : integer, optional (default=10)
|
|
|
|
|
The number of trees in the forest.
|
|
|
|
|
|
|
|
|
|
- criterion : string, optional (default="mse")
|
|
|
|
|
+ criterion : string, optional (default="squared_error")
|
|
|
|
|
The function to measure the quality of a split. Supported criteria
|
|
|
|
|
- are "mse" for the mean squared error, which is equal to variance
|
|
|
|
|
+ are "squared_error" for the mean squared error, which is equal to variance
|
|
|
|
|
reduction as feature selection criterion, and "mae" for the mean
|
|
|
|
|
absolute error.
|
|
|
|
|
|
|
|
|
|
@@ -390,7 +390,7 @@ class ExtraTreesRegressor(_sk_ExtraTreesRegressor):
|
|
|
|
|
.. [1] L. Breiman, "Random Forests", Machine Learning, 45(1), 5-32, 2001.
|
|
|
|
|
|
|
|
|
|
"""
|
|
|
|
|
- def __init__(self, n_estimators=10, criterion='mse', max_depth=None,
|
|
|
|
|
+ def __init__(self, n_estimators=10, criterion='squared_error', max_depth=None,
|
|
|
|
|
min_samples_split=2, min_samples_leaf=1,
|
|
|
|
|
min_weight_fraction_leaf=0.0, max_features='auto',
|
|
|
|
|
max_leaf_nodes=None, min_impurity_decrease=0.,
|
|
|
|
|
@@ -425,19 +425,19 @@ def predict(self, X, return_std=False):
|
|
|
|
|
Returns
|
|
|
|
|
-------
|
|
|
|
|
predictions : array-like of shape=(n_samples,)
|
|
|
|
|
- Predicted values for X. If criterion is set to "mse",
|
|
|
|
|
+ Predicted values for X. If criterion is set to "squared_error",
|
|
|
|
|
then `predictions[i] ~= mean(y | X[i])`.
|
|
|
|
|
|
|
|
|
|
std : array-like of shape=(n_samples,)
|
|
|
|
|
Standard deviation of `y` at `X`. If criterion
|
|
|
|
|
- is set to "mse", then `std[i] ~= std(y | X[i])`.
|
|
|
|
|
+ is set to "squared_error", then `std[i] ~= std(y | X[i])`.
|
|
|
|
|
"""
|
|
|
|
|
mean = super(ExtraTreesRegressor, self).predict(X)
|
|
|
|
|
|
|
|
|
|
if return_std:
|
|
|
|
|
- if self.criterion != "mse":
|
|
|
|
|
+ if self.criterion != "squared_error":
|
|
|
|
|
raise ValueError(
|
|
|
|
|
- "Expected impurity to be 'mse', got %s instead"
|
|
|
|
|
+ "Expected impurity to be 'squared_error', got %s instead"
|
|
|
|
|
% self.criterion)
|
|
|
|
|
std = _return_std(X, self.estimators_, mean, self.min_variance)
|
|
|
|
|
return mean, std
|
|
|
|
|
|
|
|
|
|
From 6eb2d4ddaa299ae47d9a69ffb31ebc4ed366d1c1 Mon Sep 17 00:00:00 2001
|
|
|
|
|
From: =?UTF-8?q?Jonas=20T=C3=B8rnes?= <jonas.tornes@gmail.com>
|
|
|
|
|
Date: Thu, 16 Feb 2023 11:34:58 +0100
|
|
|
|
|
Subject: [PATCH 2/5] Change test to be consistent with code changes.
|
|
|
|
|
|
|
|
|
|
---
|
|
|
|
|
skopt/learning/tests/test_forest.py | 4 ++--
|
|
|
|
|
1 file changed, 2 insertions(+), 2 deletions(-)
|
|
|
|
|
|
|
|
|
|
diff --git a/skopt/learning/tests/test_forest.py b/skopt/learning/tests/test_forest.py
|
|
|
|
|
index 0711cde9d..c6ed610f3 100644
|
|
|
|
|
--- a/skopt/learning/tests/test_forest.py
|
|
|
|
|
+++ b/skopt/learning/tests/test_forest.py
|
|
|
|
|
@@ -35,7 +35,7 @@ def test_random_forest():
|
|
|
|
|
assert_array_equal(clf.predict(T), true_result)
|
|
|
|
|
assert 10 == len(clf)
|
|
|
|
|
|
|
|
|
|
- clf = RandomForestRegressor(n_estimators=10, criterion="mse",
|
|
|
|
|
+ clf = RandomForestRegressor(n_estimators=10, criterion="squared_error",
|
|
|
|
|
max_depth=None, min_samples_split=2,
|
|
|
|
|
min_samples_leaf=1,
|
|
|
|
|
min_weight_fraction_leaf=0.,
|
|
|
|
|
@@ -80,7 +80,7 @@ def test_extra_forest():
|
|
|
|
|
assert_array_equal(clf.predict(T), true_result)
|
|
|
|
|
assert 10 == len(clf)
|
|
|
|
|
|
|
|
|
|
- clf = ExtraTreesRegressor(n_estimators=10, criterion="mse",
|
|
|
|
|
+ clf = ExtraTreesRegressor(n_estimators=10, criterion="squared_error",
|
|
|
|
|
max_depth=None, min_samples_split=2,
|
|
|
|
|
min_samples_leaf=1, min_weight_fraction_leaf=0.,
|
|
|
|
|
max_features="auto", max_leaf_nodes=None,
|
|
|
|
|
|
|
|
|
|
From 52c620add07d845debbaff2ce2b1c5faf3eae79b Mon Sep 17 00:00:00 2001
|
|
|
|
|
From: =?UTF-8?q?Jonas=20T=C3=B8rnes?= <jonas.tornes@gmail.com>
|
|
|
|
|
Date: Wed, 22 Feb 2023 16:59:03 +0100
|
|
|
|
|
Subject: [PATCH 3/5] Update skopt/learning/forest.py
|
|
|
|
|
MIME-Version: 1.0
|
|
|
|
|
Content-Type: text/plain; charset=UTF-8
|
|
|
|
|
Content-Transfer-Encoding: 8bit
|
|
|
|
|
|
|
|
|
|
Fix max line width
|
|
|
|
|
|
|
|
|
|
Co-authored-by: Roland Laurès <roland@laures-valdivia.net>
|
|
|
|
|
---
|
|
|
|
|
skopt/learning/forest.py | 4 ++--
|
|
|
|
|
1 file changed, 2 insertions(+), 2 deletions(-)
|
|
|
|
|
|
|
|
|
|
diff --git a/skopt/learning/forest.py b/skopt/learning/forest.py
|
|
|
|
|
index ebde568f5..07dc42664 100644
|
|
|
|
|
--- a/skopt/learning/forest.py
|
|
|
|
|
+++ b/skopt/learning/forest.py
|
|
|
|
|
@@ -194,8 +194,8 @@ class RandomForestRegressor(_sk_RandomForestRegressor):
|
|
|
|
|
.. [1] L. Breiman, "Random Forests", Machine Learning, 45(1), 5-32, 2001.
|
|
|
|
|
|
|
|
|
|
"""
|
|
|
|
|
- def __init__(self, n_estimators=10, criterion='squared_error', max_depth=None,
|
|
|
|
|
- min_samples_split=2, min_samples_leaf=1,
|
|
|
|
|
+ def __init__(self, n_estimators=10, criterion='squared_error',
|
|
|
|
|
+ max_depth=None, min_samples_split=2, min_samples_leaf=1,
|
|
|
|
|
min_weight_fraction_leaf=0.0, max_features='auto',
|
|
|
|
|
max_leaf_nodes=None, min_impurity_decrease=0.,
|
|
|
|
|
bootstrap=True, oob_score=False,
|
|
|
|
|
|
|
|
|
|
From 52a7db95cb567186fb4e9003139fea4592bdbf05 Mon Sep 17 00:00:00 2001
|
|
|
|
|
From: =?UTF-8?q?Jonas=20T=C3=B8rnes?= <jonas.tornes@gmail.com>
|
|
|
|
|
Date: Wed, 22 Feb 2023 17:03:25 +0100
|
|
|
|
|
Subject: [PATCH 4/5] Fix line widht issues
|
|
|
|
|
|
|
|
|
|
---
|
|
|
|
|
skopt/learning/forest.py | 4 ++--
|
|
|
|
|
1 file changed, 2 insertions(+), 2 deletions(-)
|
|
|
|
|
|
|
|
|
|
diff --git a/skopt/learning/forest.py b/skopt/learning/forest.py
|
|
|
|
|
index 07dc42664..d4c24456b 100644
|
|
|
|
|
--- a/skopt/learning/forest.py
|
|
|
|
|
+++ b/skopt/learning/forest.py
|
|
|
|
|
@@ -390,8 +390,8 @@ class ExtraTreesRegressor(_sk_ExtraTreesRegressor):
|
|
|
|
|
.. [1] L. Breiman, "Random Forests", Machine Learning, 45(1), 5-32, 2001.
|
|
|
|
|
|
|
|
|
|
"""
|
|
|
|
|
- def __init__(self, n_estimators=10, criterion='squared_error', max_depth=None,
|
|
|
|
|
- min_samples_split=2, min_samples_leaf=1,
|
|
|
|
|
+ def __init__(self, n_estimators=10, criterion='squared_error',
|
|
|
|
|
+ max_depth=None, min_samples_split=2, min_samples_leaf=1,
|
|
|
|
|
min_weight_fraction_leaf=0.0, max_features='auto',
|
|
|
|
|
max_leaf_nodes=None, min_impurity_decrease=0.,
|
|
|
|
|
bootstrap=False, oob_score=False,
|
|
|
|
|
|
|
|
|
|
From 6b185e489fb4a56625e8505292a20c80434f0633 Mon Sep 17 00:00:00 2001
|
|
|
|
|
From: =?UTF-8?q?Jonas=20T=C3=B8rnes?= <jonas.tornes@gmail.com>
|
|
|
|
|
Date: Wed, 22 Feb 2023 18:37:11 +0100
|
|
|
|
|
Subject: [PATCH 5/5] Fix lin width issues for comments.
|
|
|
|
|
|
|
|
|
|
---
|
|
|
|
|
skopt/learning/forest.py | 12 ++++++------
|
|
|
|
|
1 file changed, 6 insertions(+), 6 deletions(-)
|
|
|
|
|
|
|
|
|
|
diff --git a/skopt/learning/forest.py b/skopt/learning/forest.py
|
|
|
|
|
index d4c24456b..eb3bd6648 100644
|
|
|
|
|
--- a/skopt/learning/forest.py
|
|
|
|
|
+++ b/skopt/learning/forest.py
|
|
|
|
|
@@ -63,9 +63,9 @@ class RandomForestRegressor(_sk_RandomForestRegressor):
|
|
|
|
|
|
|
|
|
|
criterion : string, optional (default="squared_error")
|
|
|
|
|
The function to measure the quality of a split. Supported criteria
|
|
|
|
|
- are "squared_error" for the mean squared error, which is equal to variance
|
|
|
|
|
- reduction as feature selection criterion, and "mae" for the mean
|
|
|
|
|
- absolute error.
|
|
|
|
|
+ are "squared_error" for the mean squared error, which is equal to
|
|
|
|
|
+ variance reduction as feature selection criterion, and "mae" for the
|
|
|
|
|
+ mean absolute error.
|
|
|
|
|
|
|
|
|
|
max_features : int, float, string or None, optional (default="auto")
|
|
|
|
|
The number of features to consider when looking for the best split:
|
|
|
|
|
@@ -259,9 +259,9 @@ class ExtraTreesRegressor(_sk_ExtraTreesRegressor):
|
|
|
|
|
|
|
|
|
|
criterion : string, optional (default="squared_error")
|
|
|
|
|
The function to measure the quality of a split. Supported criteria
|
|
|
|
|
- are "squared_error" for the mean squared error, which is equal to variance
|
|
|
|
|
- reduction as feature selection criterion, and "mae" for the mean
|
|
|
|
|
- absolute error.
|
|
|
|
|
+ are "squared_error" for the mean squared error, which is equal to
|
|
|
|
|
+ variance reduction as feature selection criterion, and "mae" for the
|
|
|
|
|
+ mean absolute error.
|
|
|
|
|
|
|
|
|
|
max_features : int, float, string or None, optional (default="auto")
|
|
|
|
|
The number of features to consider when looking for the best split:
|