parent
264334716f
commit
eacf29835d
|
@ -1526,3 +1526,59 @@ a program that performs fast computation of the more general multiplicative
|
||||||
structure constants of Schubert polynomials.")
|
structure constants of Schubert polynomials.")
|
||||||
(license license:gpl2+)
|
(license license:gpl2+)
|
||||||
(home-page "http://sites.math.rutgers.edu/~asbuch/lrcalc/")))
|
(home-page "http://sites.math.rutgers.edu/~asbuch/lrcalc/")))
|
||||||
|
|
||||||
|
(define-public iml
|
||||||
|
(package
|
||||||
|
(name "iml")
|
||||||
|
(version "1.0.5")
|
||||||
|
(source
|
||||||
|
(origin
|
||||||
|
(method url-fetch)
|
||||||
|
(uri (string-append "http://www.cs.uwaterloo.ca/~astorjoh/iml-"
|
||||||
|
version ".tar.bz2"))
|
||||||
|
(sha256
|
||||||
|
(base32
|
||||||
|
"0akwhhz9b40bz6lrfxpamp7r7wkk48p455qbn04mfnl9a1l6db8x"))))
|
||||||
|
(build-system gnu-build-system)
|
||||||
|
(inputs
|
||||||
|
`(("gmp", gmp)
|
||||||
|
("cblas" ,openblas))) ; or any other BLAS library; the documentation
|
||||||
|
; mentions ATLAS in particular
|
||||||
|
(arguments
|
||||||
|
`(#:configure-flags
|
||||||
|
(list
|
||||||
|
(string-append "--with-gmp-include="
|
||||||
|
(assoc-ref %build-inputs "gmp") "/include")
|
||||||
|
(string-append "--with-gmp-lib="
|
||||||
|
(assoc-ref %build-inputs "gmp") "/lib")
|
||||||
|
"--with-cblas=-lopenblas"
|
||||||
|
(string-append "--with-cblas-include="
|
||||||
|
(assoc-ref %build-inputs "cblas") "/include")
|
||||||
|
(string-append "--with-cblas-lib="
|
||||||
|
(assoc-ref %build-inputs "cblas") "/lib"))))
|
||||||
|
(home-page "https://cs.uwaterloo.ca/~astorjoh/iml.html")
|
||||||
|
(synopsis
|
||||||
|
"Solver for systems of linear equations over the integers")
|
||||||
|
(description
|
||||||
|
"IML is a C library implementing algorithms for computing exact
|
||||||
|
solutions to dense systems of linear equations over the integers.
|
||||||
|
Currently, IML provides the following functionality:
|
||||||
|
|
||||||
|
@itemize
|
||||||
|
@item Nonsingular rational system solving:
|
||||||
|
compute the unique rational solution X to the system AX=B, where A and B
|
||||||
|
are integer matrices, A nonsingular.
|
||||||
|
@item Compute the right nullspace or kernel of an integer matrix.
|
||||||
|
@item Certified linear system solving:
|
||||||
|
compute a minimal denominator solution x to a system Ax=b, where b is an
|
||||||
|
integer vector and A is an integer matrix with arbitrary shape and
|
||||||
|
rank profile.
|
||||||
|
@end itemize
|
||||||
|
|
||||||
|
In addition, IML provides some low level routines for a variety of mod p
|
||||||
|
matrix operations: computing the row-echelon form, determinant, rank
|
||||||
|
profile, and inverse of a mod p matrix. These mod p routines are not
|
||||||
|
general purpose; they require that p satisfy some preconditions based on
|
||||||
|
the dimension of the input matrix (usually p should be prime and should be
|
||||||
|
no more than about 20 bits long).")
|
||||||
|
(license license:bsd-3)))
|
||||||
|
|
Reference in New Issue