gnu: Add r-brms.
* gnu/packages/cran.scm (r-brms): New variable. Signed-off-by: Leo Famulari <leo@famulari.name>master
parent
d7aef3ab59
commit
fa2811465b
|
@ -21726,3 +21726,55 @@ of R without the need of linking to R code. Rserve supports remote
|
|||
connection, user authentication and file transfer. A simple R client is
|
||||
included in this package as well.")
|
||||
(license license:gpl2)))
|
||||
|
||||
(define-public r-brms
|
||||
(package
|
||||
(name "r-brms")
|
||||
(version "2.12.0")
|
||||
(source
|
||||
(origin
|
||||
(method url-fetch)
|
||||
(uri (cran-uri "brms" version))
|
||||
(sha256
|
||||
(base32
|
||||
"1699lwkklfhjz7fddawlig552g2zvrc34mqwrzqjgl35r9fm08gs"))))
|
||||
(properties `((upstream-name . "brms")))
|
||||
(build-system r-build-system)
|
||||
(propagated-inputs
|
||||
`(("r-abind" ,r-abind)
|
||||
("r-backports" ,r-backports)
|
||||
("r-bayesplot" ,r-bayesplot)
|
||||
("r-bridgesampling" ,r-bridgesampling)
|
||||
("r-coda" ,r-coda)
|
||||
("r-future" ,r-future)
|
||||
("r-ggplot2" ,r-ggplot2)
|
||||
("r-glue" ,r-glue)
|
||||
("r-loo" ,r-loo)
|
||||
("r-matrix" ,r-matrix)
|
||||
("r-matrixstats" ,r-matrixstats)
|
||||
("r-mgcv" ,r-mgcv)
|
||||
("r-nleqslv" ,r-nleqslv)
|
||||
("r-nlme" ,r-nlme)
|
||||
("r-rcpp" ,r-rcpp)
|
||||
("r-rstan" ,r-rstan)
|
||||
("r-rstantools" ,r-rstantools)
|
||||
("r-shinystan" ,r-shinystan)))
|
||||
(native-inputs `(("r-knitr" ,r-knitr)))
|
||||
(home-page
|
||||
"https://github.com/paul-buerkner/brms")
|
||||
(synopsis
|
||||
"Bayesian Regression Models using 'Stan'")
|
||||
(description
|
||||
"Fit Bayesian generalized (non-)linear multivariate multilevel models
|
||||
using 'Stan' for full Bayesian inference. A wide range of distributions and
|
||||
link functions are supported, allowing users to fit -- among others -- linear,
|
||||
robust linear, count data, survival, response times, ordinal, zero-inflated,
|
||||
hurdle, and even self-defined mixture models all in a multilevel context.
|
||||
Further modeling options include non-linear and smooth terms, auto-correlation
|
||||
structures, censored data, meta-analytic standard errors, and quite a few
|
||||
more. In addition, all parameters of the response distribution can be
|
||||
predicted in order to perform distributional regression. Prior specifications
|
||||
are flexible and explicitly encourage users to apply prior distributions that
|
||||
actually reflect their beliefs. Model fit can easily be assessed and compared
|
||||
with posterior predictive checks and leave-one-out cross-validation.")
|
||||
(license license:gpl2)))
|
||||
|
|
Reference in New Issue