me
/
guix
Archived
1
0
Fork 0

gnu: Add python-tslearn.

* gnu/packages/machine-learning.scm (python-tslearn): New variable.

Co-authored-by: Ricardo Wurmus <rekado@elephly.net>.
Navid Afkhami 2023-07-07 12:00:57 +02:00 committed by Ricardo Wurmus
parent 8e83db0bce
commit fcfdb8f05e
No known key found for this signature in database
GPG Key ID: 197A5888235FACAC
1 changed files with 67 additions and 0 deletions

View File

@ -1489,6 +1489,73 @@ number of threads used in the threadpool-backed of common native libraries used
for scientific computing and data science (e.g. BLAS and OpenMP).")
(license license:bsd-3)))
(define-public python-tslearn
(package
(name "python-tslearn")
(version "0.6.1")
(source (origin
(method git-fetch)
(uri (git-reference
(url "https://github.com/tslearn-team/tslearn")
(commit (string-append "v" version))))
(file-name (git-file-name name version))
(sha256
(base32
"1fhs8c28hdqsyj8kdhzrmrxrh4w92x6nf3gm026xapp9divvljd6"))))
(build-system pyproject-build-system)
(arguments
(list
#:test-flags
'(list "-k"
(string-append
;; This one fails because of a difference in accuracy.
"not test_all_estimators[LearningShapelets-LearningShapelets]"
;; XXX: It's embarrassing to disable these two, but the truth is
;; that there's only so much we can do to force this package to
;; work with Tensorflow 1.9. It's still worth having this
;; package, because it can be used without the Tensorflow
;; backend.
;; TypeError: cannot pickle '_thread.RLock' object
" and not test_shapelets"
;; TypeError: Expected binary or unicode string, got 2
" and not test_serialize_shapelets"))
#:phases
'(modify-phases %standard-phases
(add-after 'unpack 'compatibility
(lambda _
(substitute* "tslearn/tests/sklearn_patches.py"
(("_pairwise_estimator_convert_X")
"_enforce_estimator_tags_X")
(("pairwise_estimator_convert_X\\(([^,]+), ([^,\\)]+)" _ a b)
(string-append "pairwise_estimator_convert_X(" b ", " a)))
(substitute* "tslearn/tests/test_shapelets.py"
(("tf.optimizers.Adam")
"tf.keras.optimizers.Adam"))
(substitute* "tslearn/shapelets/shapelets.py"
(("tf.keras.utils.set_random_seed")
"tf.set_random_seed")
(("def __call__\\(self, shape, dtype=None\\):")
"def __call__(self, shape, dtype=None, partition_info=None):")
(("tf.math.is_finite")
"tf.is_finite")))))))
(propagated-inputs (list python-cesium
python-h5py
python-joblib
python-numba
python-numpy
python-pandas
python-scipy
python-scikit-learn
tensorflow
python-wheel))
(native-inputs (list python-pytest))
(home-page "https://github.com/tslearn-team/tslearn")
(synopsis "Machine learning toolkit for time series data")
(description "This is a Python library for time series data mining.
It provides tools for time series classification, clustering
and forecasting.")
(license license:bsd-2)))
(define-public python-imbalanced-learn
(package
(name "python-imbalanced-learn")