* gnu/packages/maths.scm (ratpoints): New variable. * gnu/packages/patches/ratpoints-sturm_and_rp_private.patch: New file. * gnu/local.mk (dist_patch_DATA): Reference patch.
		
			
				
	
	
		
			194 lines
		
	
	
	
		
			7.9 KiB
		
	
	
	
		
			Diff
		
	
	
	
	
	
			
		
		
	
	
			194 lines
		
	
	
	
		
			7.9 KiB
		
	
	
	
		
			Diff
		
	
	
	
	
	
| diff --git a/rp-private.h b/rp-private.h
 | |
| index b4c7dad..0c7193e 100644
 | |
| --- a/rp-private.h
 | |
| +++ b/rp-private.h
 | |
| @@ -36,7 +36,7 @@
 | |
|  #define LONG_SHIFT ((LONG_LENGTH == 16) ? 4 : \
 | |
|                      (LONG_LENGTH == 32) ? 5 : \
 | |
|  		    (LONG_LENGTH == 64) ? 6 : 0)
 | |
| -#define LONG_MASK (~(-1L<<LONG_SHIFT))
 | |
| +#define LONG_MASK (~(-(1L<<LONG_SHIFT)))
 | |
|  
 | |
|  /* Check if SSE instructions can be used.
 | |
|     We assume that one SSE word of 128 bit is two long's,
 | |
| diff --git a/sturm.c b/sturm.c
 | |
| index c78d7c6..5fd2cf5 100644
 | |
| --- a/sturm.c
 | |
| +++ b/sturm.c
 | |
| @@ -27,7 +27,6 @@
 | |
|   ***********************************************************************/
 | |
|  
 | |
|  #include "ratpoints.h"
 | |
| -
 | |
|  /**************************************************************************
 | |
|   * Arguments of _ratpoints_compute_sturm() : (from the args argument)     *
 | |
|   *                                                                        *
 | |
| @@ -53,7 +52,7 @@
 | |
|  /* A helper function: evaluate the polynomial in cofs[] of given degree
 | |
|    at num/2^denexp and return the sign. */
 | |
|  
 | |
| -static long eval_sign(ratpoints_args *args, mpz_t *cofs, long degree,
 | |
| +static long eval_sign(const ratpoints_args *args, const mpz_t *cofs, long degree,
 | |
|                        long num, long denexp)
 | |
|  {
 | |
|    long n, e, s;
 | |
| @@ -70,11 +69,80 @@ static long eval_sign(ratpoints_args *args, mpz_t *cofs, long degree,
 | |
|    return(s);
 | |
|  }
 | |
|  
 | |
| +static const    long max = (long)(((unsigned long)(-1))>>1);
 | |
| +static const    long min = (long)(-(((unsigned long)(-1))>>1));
 | |
| +    /* recursive helper function */
 | |
| +static void iterate(long nl, long nr, long del, long der, long cleft, long cright,
 | |
| +                 long sl, long sr, long depth,
 | |
| +		 ratpoints_interval **iptr, const ratpoints_interval *ivlo,
 | |
| +		 const ratpoints_args *args, const long k, const long sturm_degs[],
 | |
| +                 const mpz_t sturm[][args->degree + 1])
 | |
| +    { /* nl/2^del, nr/2^der : interval left/right endpoints,
 | |
| +         cleft, cright: sign change counts at endpoints,
 | |
| +         sl, sr: signs at endpoints,
 | |
| +         depth: iteration depth */
 | |
| +     long iter = args->sturm;
 | |
| +      if(cleft == cright && sl < 0) { return; }
 | |
| +         /* here we know the polynomial is negative on the interval */
 | |
| +      if((cleft == cright && sl > 0) || depth >= iter)
 | |
| +      /* we have to add/extend an interval if we either know that
 | |
| +         the polynomial is positive on the interval (first condition)
 | |
| +         or the maximal iteration depth has been reached (second condition) */
 | |
| +      { double l = ((double)nl)/((double)(1<<del));
 | |
| +        double u = ((double)nr)/((double)(1<<der));
 | |
| +        if(*iptr == ivlo)
 | |
| +        { (*iptr)->low = l; (*iptr)->up  = u; (*iptr)++; }
 | |
| +        else
 | |
| +        { if(((*iptr)-1)->up == l) /* extend interval */
 | |
| +          { ((*iptr)-1)->up = u; }
 | |
| +          else /* new interval */
 | |
| +          { (*iptr)->low = l; (*iptr)->up  = u; (*iptr)++; }
 | |
| +        }
 | |
| +        return;
 | |
| +      }
 | |
| +      /* now we must split the interval and evaluate the sturm sequence
 | |
| +         at the midpoint */
 | |
| +      { long nm, dem, s0, s1, s2, s, cmid = 0, n;
 | |
| +        if(nl == min)
 | |
| +        { if(nr == max) { nm = 0; dem = 0; }
 | |
| +          else { nm = (nr == 0) ? -1 : 2*nr; dem = 0; }
 | |
| +        }
 | |
| +        else
 | |
| +        { if(nr == max) { nm = (nl == 0) ? 1 : 2*nl; dem = 0; }
 | |
| +          else /* "normal" case */
 | |
| +          { if(del == der) /* then both are zero */
 | |
| +            { if(((nl+nr) & 1) == 0) { nm = (nl+nr)>>1; dem = 0; }
 | |
| +              else { nm = nl+nr; dem = 1; }
 | |
| +            }
 | |
| +            else /* here one de* is greater */
 | |
| +            { if(del > der) { nm = nl + (nr<<(del-der)); dem = del+1; }
 | |
| +              else { nm = (nl<<(der-del)) + nr; dem = der+1; }
 | |
| +            }
 | |
| +          }
 | |
| +        }
 | |
| +        s0 = eval_sign(args, sturm[0], sturm_degs[0], nm, dem);
 | |
| +        s1 = eval_sign(args, sturm[1], sturm_degs[1], nm, dem);
 | |
| +        if(s0*s1 == -1) { cmid++; }
 | |
| +        s = (s1 == 0) ? s0 : s1;
 | |
| +        for(n = 2; n <= k; n++)
 | |
| +        { s2 = eval_sign(args, sturm[n], sturm_degs[n], nm, dem);
 | |
| +          if(s2 == -s) { cmid++; s = s2; }
 | |
| +          else if(s2 != 0) { s = s2; }
 | |
| +        }
 | |
| +        /* now recurse */
 | |
| +        iterate(nl, nm, del, dem, cleft, (s0==0) ? (cmid+1) : cmid,
 | |
| +                sl, (s0==0) ? -s1 : s0, depth+1,
 | |
| +                iptr, ivlo, args, k, sturm_degs, sturm);
 | |
| +        iterate(nm, nr, dem, der, cmid, cright,
 | |
| +                (s0==0) ? s1 : s0, sr, depth+1,
 | |
| +		iptr, ivlo, args, k, sturm_degs, sturm);
 | |
| +      }
 | |
| +    } /* end iterate() */
 | |
| +
 | |
|  long _ratpoints_compute_sturm(ratpoints_args *args)
 | |
|  { 
 | |
|    mpz_t *cofs = args->cof;
 | |
|    long degree = args->degree;
 | |
| -  long iter = args->sturm; 
 | |
|    ratpoints_interval *ivlist = args->domain;
 | |
|    long num_iv = args->num_inter;
 | |
|    long n, m, k, new_num;
 | |
| @@ -165,75 +233,12 @@ long _ratpoints_compute_sturm(ratpoints_args *args)
 | |
|    /* recall: typedef struct {double low; double up;} ratpoints_interval; */
 | |
|    { ratpoints_interval ivlocal[1 + (degree>>1)];
 | |
|      ratpoints_interval *iptr = &ivlocal[0];
 | |
| -    long max = (long)(((unsigned long)(-1))>>1);
 | |
| -    long min = -max;
 | |
|      long num_intervals;
 | |
|      long slcf = mpz_cmp_si(cofs[degree], 0);
 | |
|  
 | |
| -    /* recursive helper function */
 | |
| -    void iterate(long nl, long nr, long del, long der, long cleft, long cright,
 | |
| -                 long sl, long sr, long depth)
 | |
| -    { /* nl/2^del, nr/2^der : interval left/right endpoints,
 | |
| -         cleft, cright: sign change counts at endpoints,
 | |
| -         sl, sr: signs at endpoints,
 | |
| -         depth: iteration depth */
 | |
| -      if(cleft == cright && sl < 0) { return; }
 | |
| -         /* here we know the polynomial is negative on the interval */
 | |
| -      if((cleft == cright && sl > 0) || depth >= iter) 
 | |
| -      /* we have to add/extend an interval if we either know that
 | |
| -         the polynomial is positive on the interval (first condition)
 | |
| -         or the maximal iteration depth has been reached (second condition) */
 | |
| -      { double l = ((double)nl)/((double)(1<<del));
 | |
| -        double u = ((double)nr)/((double)(1<<der));
 | |
| -        if(iptr == &ivlocal[0])
 | |
| -        { iptr->low = l; iptr->up  = u; iptr++; }
 | |
| -        else
 | |
| -        { if((iptr-1)->up == l) /* extend interval */
 | |
| -          { (iptr-1)->up = u; }
 | |
| -          else /* new interval */
 | |
| -          { iptr->low = l; iptr->up  = u; iptr++; }
 | |
| -        }
 | |
| -        return; 
 | |
| -      }
 | |
| -      /* now we must split the interval and evaluate the sturm sequence
 | |
| -         at the midpoint */
 | |
| -      { long nm, dem, s0, s1, s2, s, cmid = 0, n;
 | |
| -        if(nl == min)
 | |
| -        { if(nr == max) { nm = 0; dem = 0; }
 | |
| -          else { nm = (nr == 0) ? -1 : 2*nr; dem = 0; }
 | |
| -        }
 | |
| -        else
 | |
| -        { if(nr == max) { nm = (nl == 0) ? 1 : 2*nl; dem = 0; } 
 | |
| -          else /* "normal" case */
 | |
| -          { if(del == der) /* then both are zero */
 | |
| -            { if(((nl+nr) & 1) == 0) { nm = (nl+nr)>>1; dem = 0; }
 | |
| -              else { nm = nl+nr; dem = 1; } 
 | |
| -            }
 | |
| -            else /* here one de* is greater */
 | |
| -            { if(del > der) { nm = nl + (nr<<(del-der)); dem = del+1; }
 | |
| -              else { nm = (nl<<(der-del)) + nr; dem = der+1; }
 | |
| -            }
 | |
| -          }
 | |
| -        }
 | |
| -        s0 = eval_sign(args, sturm[0], sturm_degs[0], nm, dem);
 | |
| -        s1 = eval_sign(args, sturm[1], sturm_degs[1], nm, dem);
 | |
| -        if(s0*s1 == -1) { cmid++; }
 | |
| -        s = (s1 == 0) ? s0 : s1;
 | |
| -        for(n = 2; n <= k; n++)
 | |
| -        { s2 = eval_sign(args, sturm[n], sturm_degs[n], nm, dem);
 | |
| -          if(s2 == -s) { cmid++; s = s2; }
 | |
| -          else if(s2 != 0) { s = s2; }
 | |
| -        }
 | |
| -        /* now recurse */
 | |
| -        iterate(nl, nm, del, dem, cleft, (s0==0) ? (cmid+1) : cmid, 
 | |
| -                sl, (s0==0) ? -s1 : s0, depth+1);
 | |
| -        iterate(nm, nr, dem, der, cmid, cright, 
 | |
| -                (s0==0) ? s1 : s0, sr, depth+1);
 | |
| -      }
 | |
| -    } /* end iterate() */
 | |
| -
 | |
|      iterate(min, max, 0, 0, count2, count1, 
 | |
| -            (degree & 1) ? -slcf : slcf, slcf, 0);
 | |
| +            (degree & 1) ? -slcf : slcf, slcf, 0,
 | |
| +	    &iptr, &ivlocal[0], args, k, sturm_degs, sturm);
 | |
|      num_intervals = iptr - &ivlocal[0];
 | |
|      /* intersect with given intervals */
 | |
|      { ratpoints_interval local_copy[num_iv];
 |