* gnu/packages/algebra.scm (eigen): Update to 3.3.7. [source]: Add a patch to fix a test failure. * gnu/packages/patches/eigen-stabilise-sparseqr-test.patch: New file. * gnu/local.mk (dist_patch_DATA): Add it.
		
			
				
	
	
		
			74 lines
		
	
	
	
		
			2.4 KiB
		
	
	
	
		
			Diff
		
	
	
	
	
	
			
		
		
	
	
			74 lines
		
	
	
	
		
			2.4 KiB
		
	
	
	
		
			Diff
		
	
	
	
	
	
From: Tobias Geerinckx-Rice <me@tobias.gr>
 | 
						|
Date: Mon, 16 Mar 2020 22:51:37 +0000
 | 
						|
Subject: gnu: eigen: Stabilise sparseqr test.
 | 
						|
 | 
						|
Taken verbatim from this[0] upstream commit.
 | 
						|
 | 
						|
[0]: https://gitlab.com/libeigen/eigen/-/commit/3b5deeb546d4017b24846f5b0dc3296a50a039fe
 | 
						|
 | 
						|
From 3b5deeb546d4017b24846f5b0dc3296a50a039fe Mon Sep 17 00:00:00 2001
 | 
						|
From: Gael Guennebaud <g.gael@free.fr>
 | 
						|
Date: Tue, 19 Feb 2019 22:57:51 +0100
 | 
						|
Subject: [PATCH] bug #899: make sparseqr unit test more stable by 1) trying
 | 
						|
 with larger threshold and 2) relax rank computation for rank-deficient
 | 
						|
 problems.
 | 
						|
 | 
						|
---
 | 
						|
 test/sparseqr.cpp | 31 ++++++++++++++++++++++++++-----
 | 
						|
 1 file changed, 26 insertions(+), 5 deletions(-)
 | 
						|
 | 
						|
diff --git a/test/sparseqr.cpp b/test/sparseqr.cpp
 | 
						|
index 3ffe62314..3576cc626 100644
 | 
						|
--- a/test/sparseqr.cpp
 | 
						|
+++ b/test/sparseqr.cpp
 | 
						|
@@ -43,6 +43,7 @@ int generate_sparse_rectangular_problem(MatrixType& A, DenseMat& dA, int maxRows
 | 
						|
 
 | 
						|
 template<typename Scalar> void test_sparseqr_scalar()
 | 
						|
 {
 | 
						|
+  typedef typename NumTraits<Scalar>::Real RealScalar;
 | 
						|
   typedef SparseMatrix<Scalar,ColMajor> MatrixType; 
 | 
						|
   typedef Matrix<Scalar,Dynamic,Dynamic> DenseMat;
 | 
						|
   typedef Matrix<Scalar,Dynamic,1> DenseVector;
 | 
						|
@@ -91,14 +92,34 @@ template<typename Scalar> void test_sparseqr_scalar()
 | 
						|
     exit(0);
 | 
						|
     return;
 | 
						|
   }
 | 
						|
-  
 | 
						|
-  VERIFY_IS_APPROX(A * x, b);
 | 
						|
-  
 | 
						|
-  //Compare with a dense QR solver
 | 
						|
+
 | 
						|
+  // Compare with a dense QR solver
 | 
						|
   ColPivHouseholderQR<DenseMat> dqr(dA);
 | 
						|
   refX = dqr.solve(b);
 | 
						|
   
 | 
						|
-  VERIFY_IS_EQUAL(dqr.rank(), solver.rank());
 | 
						|
+  bool rank_deficient = A.cols()>A.rows() || dqr.rank()<A.cols();
 | 
						|
+  if(rank_deficient)
 | 
						|
+  {
 | 
						|
+    // rank deficient problem -> we might have to increase the threshold
 | 
						|
+    // to get a correct solution.
 | 
						|
+    RealScalar th = RealScalar(20)*dA.colwise().norm().maxCoeff()*(A.rows()+A.cols()) * NumTraits<RealScalar>::epsilon();
 | 
						|
+    for(Index k=0; (k<16) && !test_isApprox(A*x,b); ++k)
 | 
						|
+    {
 | 
						|
+      th *= RealScalar(10);
 | 
						|
+      solver.setPivotThreshold(th);
 | 
						|
+      solver.compute(A);
 | 
						|
+      x = solver.solve(b);
 | 
						|
+    }
 | 
						|
+  }
 | 
						|
+
 | 
						|
+  VERIFY_IS_APPROX(A * x, b);
 | 
						|
+  
 | 
						|
+  // For rank deficient problem, the estimated rank might
 | 
						|
+  // be slightly off, so let's only raise a warning in such cases.
 | 
						|
+  if(rank_deficient) ++g_test_level;
 | 
						|
+  VERIFY_IS_EQUAL(solver.rank(), dqr.rank());
 | 
						|
+  if(rank_deficient) --g_test_level;
 | 
						|
+
 | 
						|
   if(solver.rank()==A.cols()) // full rank
 | 
						|
     VERIFY_IS_APPROX(x, refX);
 | 
						|
 //   else
 | 
						|
-- 
 | 
						|
2.24.1
 | 
						|
 |